Для увлекшихся темой флуоресценции минералов важно понимать, что именно они наблюдают перед собой. Для этого необходим небольшой экскурс в природу свечений и иных оптических эффектов.
Внимание: в посте не только куча гифок, но и некоторые спрятаны в некоторые гиперссылки.
Свет - форма энергии. Для того, чтобы создать свет, нужна другая форма энергии. Есть два способа производства света - инкандесценция (кандолюминесценция, накаливание) и люминесценция.
Инкандесценция (кандолюминесценция) - это свет от тепловой энергии.
(лат. гл. incandescere - светиться белым, также вам знакомо восходящее к нему слово candle, а также кандела (от лат. candela — свеча; русское обозначение: кд; международное: cd) — единица силы света).
Иными словами, это люминесценция, возбуждаемая при рекомбинации радикалов на поверхности. Именуется также «калильным свечением», «температурной люминесценцией» или «люминесценцией накалённых тел». Проявляется в виде избыточной видимой светимости сверх теплового равновесного излучения за счёт переноса энергии из невидимой части спектра.
Если нагреть что-то до достаточно высокой температуры, оно начнет светиться. Когда нагреватель электрической плиты или металл в пламени начинают светиться "горячим красным", это и есть накаливание или инкандесценция. Когда вольфрамовая нить обычной лампы накаливания нагревается еще сильнее, она светится ярко "горячим белым" по тому же принципу. Такой же тип свечения у Солнца и других звезд.
Люминесценция - это "холодный свет", эмиссия которого происходит при нормальных и низких температурах. В люминесценции, некий источник энергии вышибает электрон из атома из самого низкого "основного" состояния энергии в "возбужденное" состояние более высокой энергии ; затем электрон возвращает энергию в виде света, за счет чего он возвращается к своему "основному" состоянию. За некоторыми исключениями, энергия возбуждения всегда больше, чем энергия (длина волны, цвет) излучаемого света. (Затрат больше, чем отдачи).
Если вы поднимите камень, ваши мышцы поставляют в процесс энергию, чтобы поднять камень в позицию более высокой потенциальной энергии. Если вы затем отпустите камень, энергия, которую вы доставили в систему высвобождается, частично в форме звука, когда камень падает обратно в исходное положение с низким уровнем энергии.
То же самое с люминесценцией, только вместо земной гравитации тут сила электрического притяжения, вместо Земли - ядро атома, электрон вместо камня, и свет вместо звука.
Есть несколько разновидностей люминесценции, каждый из которых назван в соответствии с источником энергии, или триггером (запускающим механизмом) люминесценции:
Флуоресценция и фотолюминесценция - это такой тип люминесценции, где энергия в систему подается с помощью электромагнитного излучения (лучей, таких как световые, о чем будет сказано далее). Под фотолюминесценцией обычно понимается "люминесценция от любого электромагнитного излучения», в то время как флуоресценция часто используется только в отношении люминесценции, вызванной ультрафиолетовым излучением, хотя термин также может быть использован для других видов фотолюминесценции. Флуоресценция наблюдается в флуоресцентных лампах, парках аттракционов и кино, в спецэффектах, красном свечении рубинов в солнечном свете, «Неоновых» красках и маркерах, и в эмиссионных туманностях, которые видно в телескоп в ночном небе. Отбеливатели повышают свою отбеливающую силу с помощью белого флуоресцентного материала.
Фотолюминесценцию не следует путать с отражением, преломлением или рассеянием света, которые вызывают большинство цветов, которые вы видите при дневном свете или ярком искусственном освещении. Фотолюминесценция отличается тем, что свет зарядки поглощается в течение значительного времени, и обычно приводит к получению света с более низкой частотой (более высокой длины волны), которая ниже, чем частота (больше длины волны) поглощенного света.
(Например, светим ультрафиолетом, фиолетовым, а люминесценция исходит зеленым)
Хемолюминесценцией называется люминесценция, где энергия подается с помощью химических реакций. Эти пластиковые трубки светящиеся в темноте, продаваемые в парках развлечений, на дискотеках, для вечеринок являются примерами хемилюминесценции. (
ХИСки - химические источники света).
Биолюминесценция это свечение, вызванное химическими реакциями в живых
организмах; это
форма хемилюминесценции, достигаемая самостоятельно или с помощью симбионтов. Самый
яркий пример -
светлячки и планктон.
Электролюминесценция - это свечение вызываемое электрическим током.
Другими примерами электролюминесценции являются неоновые огни, полярные сияния и вспышки молний. Часто ошибочно эти процессы принимают за то, что происходит с обычными лампами накаливания, в которых электричество используется для производства тепла, и это тепло, которое, в свою очередь производит свет.
Катодолюминесценция - вид электролюминесценции, вызванный бомбардировкой электронными пучками; это то, как формируются телевизионные изображения на электронно-лучевых трубках (CRT - cathode ray tube) и прочих
ламповых агрегатах.
Радиолюминесценция - свечение, вызванное ядерной
радиацией. Светящиеся в темноте циферблаты старых часов (и, о ужас, некоторые
старые елочные игрушки) часто содержат краску с радиоактивным веществом(обычно это
соли радия) и радиолюминесцентным материалом. Также вам наверняка известны тритиевые брелки. Собственно, тритий распадается и бомбардирует оболочку из люминофора нужного цвета, вынуждая в нем свечение определенной длины волны.
Этот термин может быть также использован в отношении люминесценции, вызванной рентгеновскими лучами, что также называется фотолюминесценцией.
Фосфоресценция - это
отсроченная люминесценция или "
послесвечение".
Когда электрон в атоме вышибают на верхние орбитали в состояние высокой энергии, он может попасть там в ловушку на некоторое время
(как если бы вы подняли камень, а затем установили его на стол).
В некоторых случаях электроны избегают попадания во временные ловушки; в других случаях они остаются в ловушке, пока некий триггер не высвободит их (как если бы камень оставался на столе до тех пор, пока что-то бы его не столкнуло).
Многие светящиеся в темноте предметы, особенно игрушки для детей, включают в себя вещества (фотолюминофоры), которые получают энергию от детских душ от света
, и излучают энергию энергию в виде света позже
когда ты почти заснешь.
Триболюминесценция - вид фосфоресценции, вызванный механическим воздействием или вид электролюминесценции, возбужденный электричеством, вырабатываемым механическим воздействием. Некоторые минералы светятся при ударе или царапании, вы могли видеть это, ударяя друг о друга две кварцевых гальки в темноте.
(Испускаемый видимый свет часто является вторичным эффектом флуоресценции, вызванный электролюминесценцией в ультрафиолетовой области спектра)
Термолюминесценция -
фосфоресценция вызванная температурами выше определенного порога.
Не следует путать с накаливанием (инкандесценцией), которое происходит при более высоких температурах. В термолюминесценции
тепло не является основным источником энергии, только
триггер для высвобождения энергии, которая изначально пришла
из другого источника.
Обычно процессы фосфоресценции имеют некую минимальную температуру, но во многих из них инициирующая минимальная температура бывает ниже нормальных температур и, как правило, такие процессы не вполне могут относиться к термолюминесценции.
Тенебресценция - не люминесценция, а фотохромизм (гифки) — явление обратимого изменения окраски вещества под действием видимого света, ультрафиолета. Воздействие света вызывает в фотохромном веществе атомарные перестройки, изменение заселённости электронных уровней. Параллельно с изменением цвета вещество может менять показатель преломления, растворимость, реакционную способность, электропроводимость, другие химико-физические характеристики. Фотохромизм присущ ограниченному числу органических и неорганических, природных и синтетических соединений.
В постах про минералы часто будет встречаться такая картина: при облучении солнечным светом или ультрафиолетом минерал в обычном освещении заметно сменит окраску на фиолетовую, которая затем, когда источник УФ убран, будет плавно затухать, что будет видно в обычном освещении.
Оптически стимулированная люминесценция - это фосфоресценция под действием видимого света или инфракрасного излучения. В этом случае красный или инфракрасный свет является триггером для высвобождения ранее накопленной энергии.
Увидеть пример не получится, поскольку обычно этот пример имеет место в лабораторных условиях и регистрируется в виде наносекундных эмиссий.
Небольшой геологический экскурс:
Я в свое время в полной темноте собирал образцы прибрежного песка на приподнятом метров на 40-50 побережье Камчатки. Нужно это было для определения даты, когда этот песок там отложился, когда его туда принес океан, когда площадка, с которой я его собирал, была на еще уровне океана.
Определив время, когда этот песок последний раз виделся с дневным светом, и измерив высоту поднятия, можно было определить, с какой скоростью побережье растет ввысь. (V=S/t)
Так вот, как определить время, когда свет последний раз светил на песок?
Существует такая вещь, как оптически стимулируемое люминесцентное датирование (ОСЛ-датирование) и фотолюминесцентное датирование (ФЛ-датирование).
Суть метода:
Все минералы содержат следовые количества радиоактивных элементов, включая уран, торий, рубидий и калий.
Они медленно распадаются в течение долгого времени, и испускаемое ими ионизирующее излучение поглощается другими элементами почвенных отложений, в частности, кварцем и полевым шпатом.
Возникающие радиационные повреждения сохраняются в виде дефектов кристаллической решётки, которые являются акцепторными электронными ловушками.
Если облучить образец синим, зелёным или инфракрасным светом, кристалл будет люминесцировать, поскольку сохранённая в дефектах энергия будет высвобождаться в виде света.
Интенсивность люминесценции изменяется в зависимости от поглощённой дозы радиации, накопленной в течение времени, пока образец находился в темноте. Радиационные повреждения накапливаются со скоростью, определяемой количеством радиоактивных элементов в образце.
Экспозиция дневным светом сбрасывает накопленную в дефектах решётки энергию, и таким образом можно определить время, в течение которого образец находился в темноте.
Есть определенные трудности в заборе образцов в колбы, возраст образца, в котором минеральные гранулы были экспонированы дневным светом в течение хотя бы нескольких секунд, сбрасывается в ноль; при возбуждении светом он уже не будет испускать никаких фотонов такого рода.
Чем старше образец, тем больше света он испускает.
И осталась еще одна разновидность,
Сонолюминесценция — явление возникновения вспышки света при схлопывании кавитационных пузырьков, рождённых в жидкости мощной ультразвуковой волной.
Типичный опыт по наблюдению сонолюминесценции выглядит следующим образом: в ёмкость с водой помещают резонатор и создают в ней стоячую сферическую ультразвуковую волну.
При достаточной мощности ультразвука в самом центре резервуара появляется яркий точечный источник голубоватого света — звук превращается в свет.
В 1990-х годах появились установки, дающие яркий, непрерывный, устойчивый сонолюминесцентный свет.
Как результат, появилась возможность изучать сонолюминесцентный свет не с помощью фотоплёнок (то есть накапливая свет за длительный промежуток времени), а в реальном времени, с отличным временным и пространственным разрешением.
Эксперименты показали, что сонолюминесцентное свечение возникает в результате следующего цикла:
• Стоячая ультразвуковая волна в фазе разрежения создаёт в воде очень низкое давление, которое приводит к локальному разрыву воды и образованию кавитационного пузырька.
• В течение примерно четверти периода ультразвуковой волны (то есть пока давление остаётся очень низким), пузырёк растёт, причём если стоячая звуковая волна сферически симметрична, то и пузырёк остаётся сферическим. В отдельных экспериментах диаметр пузырька достигал долей миллиметра.
• В фазе сжатия кавитационный пузырёк схлопывается, причём всё быстрее и быстрее. Процесс схлопывания ускоряет также сила поверхностного натяжения.
• В заключительные доли периода из центра схлопнувшегося пузырька вырывается очень короткая и яркая вспышка света. Поскольку в стационарном режиме кавитационный пузырёк рождается и схлопывается миллионы раз в секунду, мы видим усреднённый сонолюминесцентный свет.