Обзор
В наблюдаемой Вселенной около двух триллионов галактик, и эволюция каждой из них чувствительна к присутствию всех остальных. Можем ли мы поместить все это в компьютер или даже мобильный телефон, чтобы смоделировать эволюцию Вселенной? В недавней статье мы представили идеально параллельный алгоритм для космологического моделирования, которое решает этот вопрос.
Современная космология полагается на очень большие наборы данных для определения содержания нашей Вселенной, в частности, количество темной материи и темной энергии. Эти большие наборы данных включают координаты и электромагнитные спектры очень далеких галактик, до 20 миллиардов световых лет от нас. В следующем десятилетии миссия Евклида и Обсерватория Веры Рубина, в частности, получит информацию о нескольких миллиардах галактик.
Физические проблемы
Установление связи между нашими знаниями физики, например, уравнениями, которые управляют эволюцией темной материи и темной энергией, и астрономические наблюдения требуют значительных вычислительных ресурсов.
Действительно, самые последние наблюдения охватывают огромные объемы: порядка куба со стороной 12 миллиардов световых лет. Поскольку типичное расстояние между двумя галактиками составляет всего несколько миллионов световых лет, мы должны смоделировать около триллиона галактик, чтобы воспроизвести наблюдения.
Кроме того, чтобы проследить физику образования этих галактик, пространственное разрешение должно быть порядка десяти световых лет. Поэтому, в идеале моделирование должно иметь коэффициент масштабирования (то есть соотношение между наибольшим и наименьшим физическим длины проблемы) близко к миллиарду. Ни один существующий или даже строящийся компьютер не может достичь такой цели.
Поэтому на практике необходимо использовать приближенные приемы, заключающиеся в «заселении» крупномасштабных структур Вселенной с жуткими (но реалистичными) галактиками. Это приближение дополнительно подтверждается тем фактом, что эволюция галактик компоненты, например звезды и межзвездный газ, связаны с очень быстрыми явлениями по сравнению с глобальной эволюцией космоса.
Использование `` ярких и сложных галактик '' по-прежнему требует моделирования динамики Вселенной с масштабным соотношением около 4000, что вполне возможно с современными суперкомпьютерами.
Проблема вычислительных пределов
Моделирование гравитационной динамики Вселенной - это то, что физики называют N-тело проблема. Хотя уравнения должны быть решаемыми являются аналитическими, поскольку в большинстве случаев в физике решения не имеют простых выражений и требуют численных методов. Прямое численное решение состоит в явном вычислении взаимодействий между всеми парами тел, также называемые «частицами». Вычисление сил прямым суммированием было предпочтительным методом в космологии в начале развития численного моделирования, в 1970-е годы. В настоящее время он в основном используется для моделирования звездных скоплений и центров галактик. Количество частиц, используемых в моделировании «прямого суммирования», представлено зелеными точками на рис. 1, где ось - N имеет логарифмический масштаб.
Рисунок 1: Эволюция количества частиц, используемых в N- моделировании тела в зависимости от года публикации. Разные символы и цвета соответствуют различным методам, используемым для вычисления гравитационной динамики (прямое суммирование зеленым цветом, продвинутые алгоритмы оранжевым цветом). Для сравнения, закон Мура о производительности компьютера представлен черной пунктирной линией.
Числовая стоимость метода прямого суммирования увеличивается как, количество рассматриваемых пар частиц. По этой причине, несмотря на улучшения, предоставляемые аппаратными ускорителями, такими как графические процессоры (GPU), количество частиц, используемых с этим методом, не может расти так быстро, как в знаменитом «Законе Мура», который предсказывает удвоение производительность компьютерного оборудования каждые 18 месяцев. Закон Мура проверялся около четырех десятилетий (1965-2005 гг.), Но как традиционные аппаратные архитектуры достигли своего физического предела, производительность отдельных вычислительных ядер достигла плато около 2015 г. (см. рис. 2). Следовательно, космологическое моделирование не может просто полагаться на то, что процессоры становятся быстрее, чтобы сократить время вычислений.
Рисунок 2: Однопоточная производительность ЦП как функция времени. Различные товарные знаки и модели представлены разными цветами и символами, как указано в подписи. Этот график основан на скорректированных результатах SPECfp®.
Чтобы снизить стоимость моделирования, большая часть работы в области численной космологии с 1980 г. заключалась в улучшении алгоритмов. Цель состояла в том, чтобы обойти явный расчет всех гравитационных взаимодействий между частицами, особенно для пары, которые являются наиболее удаленными в моделируемом объеме. Эти алгоритмические разработки позволили значительно увеличить в количестве частиц, используемых в космологическом моделировании (см. оранжевые треугольники на рисунке 1). Фактически, с 1990 г. вычислительные мощности в космологии увеличивались быстрее, чем закон Мура, а усовершенствования программного обеспечения добавляли увеличение производительности компьютера (подробнее в этом сообщении в блоге).
В 2020 году с архитектурой современных суперкомпьютеров вычисления больше не ограничиваются количеством операций, которые процессоры могут обработать в заданное время, но из-за присущих им задержек при обмене данными между различными процессорами участвуют в так называемых «параллельных» расчетах. В этих вычислительных методах большое количество процессоров работают вместе, синхронно для выполнения вычислений, слишком сложных для выполнения на обычном компьютере.
https://florent-leclercq.eu/blog.php?page=2
Застой производительности из-за задержек связи теоретизировались в «законе Амдала» (см. рис. 3), названном в честь ученого, который сформулировал ее в 1967 году. Теперь это главная проблема космологического моделирования: без повышения «степени параллелизма »наших алгоритмов, мы скоро выйдем на технологическое плато.
Рисунок 3: Закон Амдала: теоретическое ускорение выполнения программы в зависимости, от количества процессоров выполняющего его, для разных значений параллельной части программы (разные строки). Ускорение ограничено программой. Например, если 90% программы можно распараллелить, теоретический максимальный коэффициент ускорения с использованием большого количества процессоров будет 10.
Подход sCOLA: разделяй и властвуй
Вернемся к решаемой физической проблеме: речь идет о моделировании гравитационной динамики Вселенной на разные масштабы. В «малых» масштабах есть много объектов, которые взаимодействуют друг с другом: требуется численное моделирование. Но в «больших» пространственных масштабах, то есть если мы посмотрим на рисунок 4 очень издалека, в ходе эволюции происходит немногое (за исключением линейного увеличение амплитуды неоднородностей). Несмотря на это, при использовании традиционных алгоритмов моделирования гравитационный эффект всех частиц друг на друга должны быть рассчитаны, даже если они очень далеко друг от друга. Это дорого и практически бесполезно, так как большая часть гравитационной эволюции правильно описывается простыми уравнениями, которые можно решить практически без компьютера.
Рисунок 4: Сравнение между традиционным моделированием (левая панель) и симуляцией с использованием нашего нового алгоритма (правая панель). Согласно нашему подходу, объем моделирования представляет собой мозаику из «плиток», вычисляемых независимо, чьи края представлены пунктирными линиями. Чтобы свести к минимуму ненужные численные вычисления, можно использовать гибридный алгоритм моделирования.
Основная идея, называемая пространственным сопутствующим лагранжевым ускорением (sCOLA), заключается, в физике: это «смена системы координат». В этом контексте крупномасштабной динамики учитывается новая система отсчета, в то время как мелкомасштабная динамика решается численно на компьютере с использованием обычных расчетов гравитации.
К сожалению, самая первая версия алгоритма sCOLA дает результаты, которые слишком приблизительны, чтобы быть годными к употреблению. В нашей последней публикации мы изменили sCOLA, чтобы повысить ее точность.
Кроме того, мы осознали, что эта концепция позволяет «разделять и властвовать».
Действительно, учитывая большой объем моделированния, sCOLA позволяет моделировать под томы меньшего размера независимо, без связи с соседними под томами. Таким образом, наш подход позволяет представить Вселенную в виде большой мозаики: каждый из «Плитки» на рис. 4 - это небольшая симуляция, которую может решить скромный компьютер, и сборка всех плиток дает общую картину.
Это то, что в информатике называется «идеально параллельным» алгоритмом, в отличие от всех алгоритмов космологического моделирования до сих пор существовавших. Благодаря ему мы смогли получить космологическое моделирование с удовлетворительным разрешением, оставаясь при этом на относительно скромной вычислительной базе (рис. 5).
Наш идеально параллельный алгоритм sCOLA был реализован в общедоступном коде Simbelmynë, куда он включен в версии 0.4.0 и новее.
Рис. 5. Компьютер на базе графического процессора в Парижском институте астрофизики. Его стоимость составляет лишь сотую часть стоимости суперкомпьютера на мобильных вычислительных мощностях.
Новое оборудование для моделирования Вселенной
Этот новый алгоритм не ограничивается использованием в небольших вычислительных мощностях, но позволяет предусмотреть новые способы использования вычислительного оборудования. В идеале каждая из «плиток» может быть достаточно маленькой, чтобы помещаться в «кэш-память» наших компьютеров, то есть часть памяти, к которой процессоры могут получить доступ за наименьшее время. В результате скорость связи увеличивается, что позволит нам очень быстро смоделировать весь объем Вселенной или даже с разрешением, которого до сих пор не было достигнуто.
Идя дальше, мы можем даже представить, что каждая из имитаций, соответствующих «плитке», будет достаточно маленькой, чтобы ее можно было использовать на современном мобильном телефоне!
Этот метод распараллеливания будет основан на такой платформе, как Cosmology@Home, который посвящен распределенным совместным вычислениям. Эта платформа основана на усилиях, инициированных SETI@Home для поиска внеземного разума.
Хотите принять участие в распределенных вычислениях, тогда, Вам сюда:
https://boinc.ru
https://www.euclid-ec.org/
https://www.lsst.org/
http://spec.org/
https://arxiv.org/abs/1502.07751
http://simbelmyne.florent-leclercq.eu/
https://www.cosmologyathome.org/
https://setiathome.berkeley.edu/