Серия «Физика»

Как выглядит атом?

Неизвестно, кто впервые задумался над тем, что если пилить материю на мелкие части неограниченно долго, то рано или поздно дойдёшь до мельчайшей неделимой частицы. Знаем мы лишь то, что был один Древний грек по имени Демокрит, который в свою защиту на судебном процессе по поводу растраты наследства читал отрывки из своего произведения «Мирострой», за что был почему-то оправдан. Суд посчитал, что деньги были потрачены не зря. Во всяком случае, именно ему мы обязаны тем, что та самая мельчайшая частица теперь называется «атом» (ἄτομος по-гречески «неделимый»).


Вопрос оставался чисто философским ещё 22 столетия, пока в 1803 году англичанин Джон Дальтон, не заметил, что расход вещества в химических реакциях всегда кратен целым числам («Кислород может соединяться с определённым количеством азота, или уже с удвоенным таким же, но не может быть какого-либо промежуточного значения количества вещества»), что свидетельствовало о том, что всё состоит из мельчайших неделимых кусочков – атомов, причём, он же первый показал, что атомы разных элементов имеют разный вес.


В 19 веке не было телевизора, поэтому люди старательно пытались его изобрести, для этого они занимались странными вещами – они откачивали воздух из стеклянной трубки с запаянными внутрь металлическими пластинами, затем пропускали по ним электричество. Разреженный газ в трубке начинал светиться. Долго думали, что бы это значило. Кто-то говорил, что это «лучистая материя», кто-то – «эфирные волны»…

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Так бы и спорили, пока в 1897 году ещё один англичанин Джозеф Томсон не догадался поставить рядом магнит, и не увидел, что луч отклоняется. Он прикинул, какой массой должна обладать частица, отклоняющаяся на заданное расстояние при известной силе магнита. Оказалось, что она весит в ~1800 раз меньше, чем масса легчайшего известного атома – водорода. Так был открыт электрон – первая субатомная частица. Разумеется, слово атом (неделимый, ха!) менять уже не стали.


Томсон предложил идею сливового пудинга – есть положительно заряженное что-то, а в него понатыканы открытые им электроны:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Тем временем в Германии…


Картинка в первой лучевой трубке (ага, телевизоре) была «не ахти», но это всё равно было лучше, чем ничего, рассудил немец Вильгельм Конрад Рентген, и подставил под катодные лучи руку своего знакомого, получив первый в мире рентгеновский снимок:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Рентген позанимался новой игрушкой год, да и забросил. Интересующимся он отвечал: «Я уже всё написал (про Х-лучи), не тратьте зря время».


Но француз Антуан Анри Беккерель не унимался. Ему пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом.


2 марта 1896 Беккерель доложил об этом открытии на заседании Парижской Академии наук, озаглавив свою работу «О невидимой радиации, производимой фосфоресцирующими телами».


«Хм, а это занятно», подумал английский новозеландец (или новозеландский англичанин) Эрнест Резерфорд (по прозвищу «Крокодил», нет, правда, так его называл советский физик Пётр Капица, который у него работал), подумал, да и пропустил радиоактивный поток через магнитное поле:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

1 — радиоактивный препарат, 2 — свинцовый цилиндр, 3 — фотопластинка.


На фотографии он увидел, что пучок распадался на три части. Две составляющие первичного излучения отклонялись в противоположные стороны, что указывало на наличие у них зарядов противоположных знаков. Третья составляющая сохраняла прямолинейность распространения. Излучение, обладающее положительным зарядом, получило название альфа-лучи, отрицательным — бета-лучи, нейтральным — гамма-лучи. Но это сейчас не важно. Важно то, что, помимо всего прочего, он дал позабавиться своим лаборантам Эрнсту Марсдену и Хансу Гейгеру (тому самому, которым ещё счётчик назвали) с золотой фольгой, и вот что получилось:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Ждали, что альфа-частицы будут беспрепятственно проходить сквозь фольгу, однако они то и дело отскакивали. Необъяснимое, количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры, в нём сосредоточен значительный электрический заряд и масса атома. Это неспроста, подумал Резерфорд, и начал считать. Получилось, что внутри атома электроны, стало быть, не плавают в положительно заряженном тумане, а болтаются вокруг крохотного ядра. Это было в 1913 году.


Резерфорд продолжал опыты и к 1919 году, стреляя альфа-частицами в воздух, смог доказать, что так или иначе, ядро атома водорода присутствует во всех других атомах. Это была первый задокументированный случай в истории ядерной реакции, проведённой человеком. Поскольку в воздухе полно азота, альфа-частица попадала в атом азота, превращая его в атом кислорода 17. Замечательным было то, что от удара из атома вылетало ещё и ядро атома водорода, который назвали протон (греч. πρῶτος — первый, основной).


¹⁴N + α → ¹⁷O + p


Ну, и именно благодаря Резерфорду мы теперь имеем вот это:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Иначе говоря «Планетарная модель атома», которая устарела, не успев появиться на свет. Но и теперь, спустя 100 с лишним лет, когда кому-то надо нарисовать атом, рисуют вот эти вот три овальчика. В этой модели вокруг центрального и относительно маленького положительно-заряженного ядра подобно планетам вращались отрицательно-заряженные электроны.


Но что-то по-прежнему не сходилось. Атомы имели нейтральный электрический заряд, а если просто сложить массы протонов так, чтобы их заряд уравновешивал заряд электронов, то атомы должны были быть гораздо легче. Это не соотносилось с атомными весами элементов, которые были известны уже под сотню лет, со времён Дальтона.


Интрига тянулась до 1932 года, когда англичанин Джеймс Чедвик подтвердил существование последней составляющей атома – нейтрона, но это уже совсем другая история.


Вообще сам Резерфорд понимал, что не всё так гладко с его моделью. Если б всё было так, то непонятно, почему электрон не падает на ядро, ведь, двигаясь по «орбите» (а это движение с ускорением), электрон должен был терять кинетическую энергию и испускать фотоны…


Тут нужно сказать, что незадолго до этого момента Макс Планк наделал много шума со своими квантами. Он предположил, что свет (электромагнитное излучение) может передаваться не как угодно, а лишь определёнными порциями «квантами». Так он придумал константу имени себя h, которая связывала энергию световой частицы (фотона) с его частотой. Заметили? У частицы появилась частота, как у волны. Ну, и как бы намекнул, что фотон – это и частица и волна одновременно.


На сцене появляется ещё один человек – Нильс Бор, сын банкира, брат серебряного финалиста сборной Дании по футболу на Олимпиаде 1908 г., да и сам футболист. Его рассуждения были просты – надо не отрицать очевидное, а смириться с ним. Раз атом стабилен, значит, электроны, находясь на определённых «орбитах», стабильны и не излучают.

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Слева свет беспрепятственно попал на призму и разделился на непрерывный спектр. Справа сверху свет проходит сквозь облако газа, и спектр получился с тёмными полосками (часть световых волн была поглощена). Снизу газ уже не подсвечивается, по мере того, как газ остывает, мы увидим отдельные цветные полоски – это фотоны, которые излучает остывающий газ. Думаю, все видели, как светится нагретый кусок металла, здесь природа такая же.


Ещё покрутив туда-сюда формулы, Бор так же обнаружил, что электроны могут иметь только такую энергию, при которой их момент импульса равен только целому числу констант Планка. То есть, рассудил Бор, электрон может иметь только определённые, «разрешённые» уровни энергий. Если электрон встречается с фотоном нужной энергии (с нужной длиной волны), он сможет его поглотить и перескочить «вверх» на следующий уровень, а если энергии будет чуть больше или чуть меньше, то ничего не произойдёт. И наоборот, поскольку электрон может перескочить только на «разрешённый» уровень, значит, и отдать он должен фотон лишь определённой энергии (частоты):

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Если посмотреть на спектры эмиссии и поглощения водорода, можно будет рассчитать уровни энергии для всех возможных переходов с уровня на уровень для любого атома. Внизу на картинке – пример с водородом:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Модель Бора отличалась от модели Резерфорда лишь «закреплением» определённых «разрешённых уровней возбуждения, однако объяснить природу подобных запретов она не смогла. Не была эта модель и универсальной: для атомов, похожих на водород, она ещё могла предсказать их строение, которое соотносилась с экспериментальными данными, однако для других атомов, предсказания по модели Бора серьёзно отличались от данных, полученных на спектрометре. А разгадка одна – Бор пользовался классической теорией Максвелла, и не догадался применить квантование на массивные частицы (так как это сделал Планк для фотонов – частиц, не имеющих массы)…


А вот француз Луи Де Бройль смог!


И вот, что он придумал – он сказал, «пусть электрон тоже будет волной»! Тогда получается всё просто, никто электронам ничего не разрешает и не запрещает, просто на «орбите» должно вместиться целое число волн:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

От Де Бройля действительно потребовались чудеса нестандартного мышления, чтобы в то время приписать волновые свойства электрону – явно частице, имеющей массу и заряд. Но и его модель атома страдала той же проблемой – почему отрицательный электрон просто не «падает» на положительное ядро? В рамках классического механики, подобное движение по «орбите» непременно должно было заставить электроны отдать всю свою энергию и упасть.


Ответ стал очевидным в 1926 году для австрийца Эрвина Шрёдингера – наверное, этого не происходит потому, что никаких «орбит» не существует, а электроны не вращаются! Если электроны – это волны, причём такие, которые могут «квантоваться», то есть существовать лишь определёнными «порциями», то почему бы нам не воспринимать вообще ВСЕ известные частицы как волны?


Раз так, нам понадобится какое-то новое уравнение вместо уравнений Ньютона, которое смогло бы помочь предсказать их поведение. Что-то вроде уравнений Максвелла, только для всех частиц!

Мы назовём нашу волновую функцию ψ Мы возьмём полную энергию частицы H, которую назовём Гамильтониан (Hamiltonian) и посмотрим, как она изменяется за время t:

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост

Это уравнение будет содержать все волновые формы частицы. Собственно, это и есть знаменитое уравнение Шрёдингера в его наиболее общей форме.


Внимание, ОБМАН! Картинка с волнистыми траекториями не отражает действительное положение вещей и всё сильно упрощает. Никаких волнистых траекторий электрон на самом деле не описывает. А что же тогда «волнуется», что это за волны такие?


На что немец Макс Борн в том же 1926 году со всей ответственностью заявил: это волны вероятности! Вероятность нахождения электрона в том или ином месте. Здесь необходимо вспомнить отца квантовой механики Вернера Гейзенберга и его принцип неопределённости (ссылка на пост про него) – если вы знаете импульс частицы (куда она летит), вы не знаете, где она находится, если же вы знаете её месторасположение, вы не знаете её импульса. Все промежуточные состояния можно оценить только с определённой ВЕРОЯТНОСТЬЮ.


В конечном счёте мы приходим к неутешительному выводу, атом может выглядеть практически как угодно. На рисунке ниже показаны все возможные конфигурации нахождения электрона в простейшем атоме водорода. Более ярким цветом выделены области, где вы с наибольшей вероятностью сможете найти электрон, однако это не значит, что он там есть.

Как выглядит атом? Наука, Квантовая физика, Атом, История науки, Научпоп, Длиннопост
Показать полностью 12

Кварки - кирпичики материи

К началу 60-х годов 20 века, физики располагали целым зоопарком открытых элементарных частиц, подверженных сильному взаимодействию (такие частицы называют адроны и у них есть собственный коллайдер). Этот «зоопарк» насчитывал к тому времени более 100 видов открытых адронов. Почти каждый год открывалась какая-то новая частица, и многим это не нравилось – было очевидно, что открытые частицы не отражали предельный или «фундаментальный» уровень материи. Само слово «фундаментальный» предполагает, что частица не имеет составных частей, иными словами, её нельзя разобрать на части или разделить. Так же многим было очевидно (однако, экспериментально это не было на тот момент подтверждено), что в природе не может быть такого количества фундаментальных строительных блоков или «кирпичиков», если хотите. Поэтому гипотеза о новых фундаментальных частицах, из которых можно строить адроны, казалась вполне правдоподобной.

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

До того это всех достало, что в 1964 году аж два физика, американец Ма́рри (Мюррей) Гелл-Ма́н (Murray Gell-Mann) и Джордж Цвейг (George Zweig) независимо друг от друга предложили новую модель, в которой адроны состояли из более мелких составных частей, а уже через год эту модель дополнили и развили.


Если кому интересно, как Гэлл-Манн дошёл до жизни такой, гуглим Eightfold way (Восьмеричный путь). Модель изначально предлагала 3 вида таких кирпичиков, а поскольку Гэлл-Манн в то время перечитывал роман Джеймса Джойса (James Joyce) «Поминки по Финнегану» (в оригинале Finnegans Wake), где в одном из эпизодов чайки кричат “Three quarks for Muster Mark”, слово quark ему приглянулось, вот он и назвал эти частицы кварками.


Четыре года спустя, в 1968 году, в Национальной ускорительной лаборатории SLAC (Стенфорд), операторы безбожно тратили деньги американских налогоплательщиков, развлекаясь тем, что обстреливали ни в чём не повинные протоны хорошенько разогнанными электронами, фотографируя последствия.


Результат экспериментов схематично показан на рисунке ниже – видно, что в ряде случаев электрон пролетал протон насквозь, а в других случаях – отскакивал от каких-то препятствий.

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

На самом деле, фотографии столкновений на ускорителях частиц выглядили примерно так (рисунок не от конкретно этого опыта, просто для представления о том, как выглядит результат эксперимента на ускорителе):

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

Всё говорило о том, что протон неоднороден и состоит из более мелких частиц. Физики, работающие на SLAC даже не хотели называть открытые ими частицы «кварки», как предлагал Гэлл-Манн. Ричард Фейнман даже придумал для них другое название – «партон» (от part – часть), однако название «кварк» уже закрепилось и сейчас партонами называют все виды составных частей адронов (кварки, анти-кварки и глюоны).


Для того, чтобы расчёты теоретической модели работали, было необходимо немыслимое: «раздробить» заряд электрона, считавшийся до этих пор элементарным (неделимым). Так один тип кварков должен был иметь положительный электрический заряд в 2/3 заряда электрона, а другой – отрицательный заряд в 1/3. Как-то, Гэлл-Манн со своим коллегой Гаральдом Фрицшем обсуждали классификацию кварков и забрели в кафе Baskin-Robbins, где предлагали 31 вкус (flavour) мороженного. Так, благодаря мороженному, типы кварков получили название flavour (изначально – вкус, но в русскоязычной литературе используется термин «аромат»). На всякий случай напомню: ничего общего с реальным вкусом или ароматом кварков данный термин не имеет. Строго говоря, это общее название квантовых чисел (читай — характеристика или свойство), характеризующее тип кварка.


Всего известно о 6 ароматах кварков: верхний (u – up), нижний (d – down), очаровательный (c – charm), странный (s – strange), истинный (t – truth или top) и прелестный (b – beauty или bottom).

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

Названия ароматов – причуда учёных. Верхний и нижний ароматы были названы, потому что имели разные верхние и нижние компоненты изоспина (ещё одно из свойств кварков), название «странный» было дано кваркам, которые были обнаружены в «странных частицах», открытых в космических лучах ещё до предложенной кварковой модели. Странным в них было то, что у них был странно-долгая продолжительность жизни. Очаровательный аромат был назван Шелдоном Ли Глэшоу и Джеймсом Бьёркеном, работающими в то время на SLAC, по их словам за «очарование и симметрию, которую он привнёс в субъядерный мир». Названия top и bottom были предложены Хаимом Харари, так как они являются «логическими партнёрами» верхнего и нижнего кварков. Хотя, названия последних двух в англоязычной литературе обычно приводятся как top и bottom, но, чтобы не путать up с top, а down с bottom, в русскоязычных источниках используются названия истинный и прелестный. Truth не прижилось, а вот названием прелестный (beauty) иногда пользуются на ускорителях, когда говорят о них, как о «фабриках красоты» (beauty factories). Что между ними общего? Если смотреть по рядам, то масса растёт слева направо, но все сохраняют электрический заряд и спин. Столбцы на картинке представляют собой т. н. «поколения». Чтобы этот пост не превратился в путеводитель по физике частиц, далее будем касаться только верхнего и нижнего кварков, так как почти вся материя нашей вселенной состоит именно из них.


Кварк – частица очень хрупкая и не может существовать в одиночку. Отдельно кварк может прожить невообразимо малое время – менее 3 × 10⁻²⁴ секунды. Ему просто необходимо общество других кварков. Почему? Дело в том, что кварки любят обмениваться энергией с соседями, для чего постоянно посылают соседям «пакеты» энергии, которые называются глюоны. Если кварк не получит энергии взамен утраченной, он попросту исчезнет. Навание глюон произошло от английского слова glue (клей), и очень точно описывает их суть.

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

Глюоны являются переносчиком сильного ядерного взаимодействия – одной из четырёх фундаментальных сил природы (электромагнитной, сильной, слабой и гравитации). Мы все видели результат электромагнитного взаимодействия или гравитации, однако дальность действия сильного взаимодействия очень мала – она проявляется лишь на расстояниях порядка размера атомного ядра. Так почему же она «сильная»? Потому что на расстоянии её действия, она действительно очень сильна. Эта сила склеивает кварки друг с другом, и ещё остаётся достаточно, чтобы склеить вместе протоны и нейтроны в атомном ядре. Собственно, энергия звёзд – энергия термоядерного синтеза, есть ни что иное, как одно из проявлений сильного ядерного взаимодействия.


Эта сила замечательна ещё и тем, что в отличие от электромагнитного, сила которого убывает с расстоянием, сильное взаимодействие до определённого предела становится тем сильнее, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину (однако, это неверная аналогия, и ниже я объясню почему): чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается.


Сильное взаимодействие так же имеет свой заряд (по аналогии с электрическими зарядами в электромагнитизме), но он не электрический, а цветовой. Да, кварки и глюоны все разноцветные. Нет, разумеется, они слишком малы, чтобы иметь цвет в нашем повседневном смысле (их размер на много порядков меньше, чем длины волн видимого цвета). Тем не менее, кварки могут обладать неэлектрическим «зарядом», которому присвоен определённый «цвет». Строго говоря, это ещё одно квантовое число (читай свойство), которым можно охарактеризовать кварк. Вообще, тот же Фейнман назвал идиотами своих коллег-физиков, кто придумал именовать данный вид заряда «цветом», но что поделать, название прижилось, к тому же, изменение цветового заряда у кварков действительно напоминают процесс смешения цветов. Физики раскрасили кварки в три основных цвета (условно: красный, зелёный и синий), а так же дополнили картину «анти-цветами» (анти-красным, анти-зелёным и анти-синим).

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

Комбинации цветовых зарядов красный + синий + зелёный, либо анти-красный + анти-синий + анти-зелёный, либо любая пара цвет + анти-цвет дают бесцветный (нулевой цветовой заряд).


Все адроны имеют нулевой цветовой заряд, соответственно, чтобы этого добиться, нужно либо скомбинировать три дополняющих друг друга до нулевого цветовые заряды (красный + синий + зелёный), и тогда получится класс частиц, называемых барионы, либо скомбинировать кварк и анти-кварк, и тогда получится мезон.


Глюоны, испускаемые кварками так же имеют цветной заряд, более того, при выпуске глюона определённого «цвета», сам кварк тоже изменит цвет, так как глюон «унесёт» с собой определённый цветовой компонент. Схематично данный процесс показан на следующей анимации:

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

Давайте же разберёмся, почему сила, стягивающая кварки вместе – сильное ядерное взаимодействие, увеличивается при увеличении расстояния – это происходит из-за того, что в пространстве между кварками не происходит квантовых флуктуаций, описанных в предыдущем посте, кварки как бы сдавливает друг с другом под давлением квантовой пены. Это эффект сродни описанному в том же посте эффекту Казимира. Как я уже упомянул выше, сравнение глюонов с пружиной – не совсем верная аналогия, на самом деле кварки сдавливаются вместе внешним давлением квантовых флуктуаций. На анимации красным полем показан усреднённый уровень энергии вокруг двух кварков. Между кварками наблюдается провал.

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

Чем дальше расходятся кварки друг с другом, тем больше энергии в виде «глюонов» вкачивается в пространство между ними. Как уже было сказано в другом посте, чтобы создать по-настоящему пустое место, нужно много энергии. Но в какой-то момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен. Данное явление получило название Конфайнмент (удержание цвета). По этой же причине, схема протона и нейтрона, на которой обычно показано по три кварка так же неверна. Протон и нейтрон могут содержать какое угодно (нечётное!) число кварков, однако большая часть их – виртуальная (то есть, создана в паре со своим анти-кварком). Самым близким по прадоподобности условным изображением строения протона, что удалось найти, приведено ниже – несколько кварков в квантовой пене (в данном случае – 5, но может быть и 7, 9, 11 – любое нечётное количество, важно лишь, чтобы их суммарный электрический заряд был равен +1, а суммарный цветовой заряд – 0):

Кварки - кирпичики материи Квантовая физика, Кварки, Наука, Фундаментальные частицы, Гифка, Длиннопост

На рисунке видно, что помимо верхнего и нижнего кварков, в данный конкретный миг времени в протоне так же присутствует кварк-антикварк пара виртуальных странных кварков. Через миг они могут исчезнуть, а взамен них может появиться ещё какое-нибудь количество виртуальных пар. Так же виден вакуум, который образовался в пространстве между ними. Глюоны, которыми обмениваются кварки, подавляют флуктуации и окружающая квантовая пена сдавливает кварки друг с другом, что и является проявлением сильного фундаментального взаимодействия.


Так же, будет заблуждением считать, что масса протона или нейтрона есть результат взаимодействия кварков с полем Хиггса. Безусловно, данное взаимодействие даёт им какую-то массу (порядка всего 1%). Остальная масса – энергия. Энергия глюонов, которыми постоянно обмениваются кварки.

Показать полностью 9

Так ли "пуст" вакуум как нам кажется?

Мы привыкли понимать слово «вакуум», как область пространства, где полностью отсутствует какая-либо материя, однако по-настоящему пустого пространства в нашей вселенной попросту не существует. А всё из-за одного наблюдения, который в 1927 году сделал немецкий физик Вернер Гейзенберг. Выраженное в математической формуле, данное наблюдение получило название «принцип неопределённости» или даже «принцип неопределённости Гейзенберга».

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

У квантовой механики есть несколько отцов-основателей, однако именно Вернер Гейзенберг получил Нобелевскую премию по физике с формулировкой «за создание квантовой механики...».


Простыми словами, эта формула значит следующее: чем точнее мы будем знать положение квантового объекта в пространстве, тем меньше мы будем знать о моменте этой частицы и наоборот. Сам по себе, данный принцип является краеугольным камнем в фундаменте квантовой механики.


Давайте разбираться


На сегодняшний день, единственной экспериментально-подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя), является квантовая теория поля (КТП). Согласно этой теории, пространство пронизано различными квантовыми полями, своё поле есть для каждой частицы. Различные энергии полей заставляют их колебаться и вибрировать с разной интенсивностью, и эти пики возбуждения и есть электроны, кварки, нейтрино, фотоны, глюоны и пр.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Поскольку поля являются квантовыми, это значит, что возбуждение поля может происходить не с какой угодно энергией, а лишь «порциями» или квантами – целочисленными множителями какого-то базового минимального уровня. Иными словами, уровни энергии можно представить определёнными ступенями, чем выше «ступенька», тем больше частиц находится в данном квантовом состоянии. Вся «математика» квантовой теории поля состоит из путешествий вверх и вниз по этим ступеням при помощи операций создания и аннигиляции, помогают в которых диаграммы, которые придумал американец Ричард Фейнман – по-своему легендарная фигура и не только в физике.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Пример – диаграмма аннигиляции электрон-позитронной пары, которая порождает фотон, который, в свою очередь, снова распадается на электрон-позитронную пару. Просто следим за стрелочками и смотрим, как происходит взаимодействие частиц.


Самый низкий энергетический уровень нашей «лесенки» не должен иметь никакой энергии, что означает, что в данном квантовом состоянии отсутствуют какие-либо частицы, это состояние вакуума. В идеальном вакууме, энергия всех полей всё время должна находиться в состоянии вакуума, но тут на сцену выходит принцип неопределённости Гейзенберга. Мы видели, что невозможно одномоментно зафиксировать положение и момент частицы, но у принципа неопределённости есть одно следствие – оотношению неопределённости подвержены не только момент и скорость, но и любые две сопряжённые переменные. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Иными словами, соотношение неопределённости можно также применить и к энергии со временем, в той интерпретации, что Δ E – максимальная точность определения энергии квантовой системы, достижимая путём процесса измерения, длящегося время Δ t :

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Чем точнее мы будем стараться определить временной интервал, тем меньше определённой будет энергия квантового поля в заданном отрезке времени, квантовое поле будет размыто по всем энергетическим состояниям. В вакууме, наиболее вероятный уровень энергии – нулевой, но иногда поле будет содержать достаточно энергии, чтобы создать частицу, будто бы «из ничего». Такие частицы называются «виртуальными частицами». Квантовая теория поля рассматривает подобные виртуальные частицы как основу и связующее звено всех взаимодействий в нашей вселенной. Например, электромагнитное взаимодействие рассматривается как обмен виртуальными фотонами между двумя заряженными частицами.


Однако, законы сохранения должны соблюдаться и здесь, и виртуальные частицы обычно создаются парами частица-античастица. И существовать такие пары могут лишь в тот краткий миг времени, отведённый принципом неопределённости, и чем выше энергия виртуальной частицы, тем меньший период времени она может существовать. Это ограничение и определяет дальность действия каждого из фундаментальных взаимодействий. Например, безмассовый фотон может иметь крайне малые уровни энергии, поэтому может существовать неопределённо долго, достаточно долго, чтобы передавать электромагнитное взаимодействие на любое расстояние. В случае с глюоном же, требуется более высокая энергия на его создание, что означает, существует предел для перемещения виртуального глюона, что делает сильное ядерное взаимодействие (переносчиком которого и являются глюоны) столь ограниченным по расстоянию.


Кто-то может возразить, что виртуальные частицы – лишь математический трюк, костыль, которым подпирают теорию (хотя надо отметить, что КТП делает предкрасные предсказания и описания явлений в своей области), но как же «поймать» виртуальную частицу, которая по определению существует между измерениями, живёт тогда, когда мы не смотрим?


Первые намёки на них мы получили в 1947 году Уиллисом Лэмбом и его аспирантом Робертом Ризерфордом (нет, не тем Резерфордом), которые заметили слабое различие между энергиями стационарных состояний ²S₁⸝₂ и ²P₁⸝₂ атома водорода. Позднее его назовут Лэмбовский сдвиг, а самому Лэмбу дадут Нобелевку, однако на то время по модели Бора, данные уровни должны были иметь идентичные уровни энергии. Данное открытие заставило учёных исследовать глубже данный феномен. Позднее американец немецкого происхождения Ханс Бете объяснил данный сдвиг флуктуациями энергии вакуума.


Виртуальные частицы и анти-частицы образовываются в пространстве между ядром и электронами, после чего ориентируются по силовым линиям электрического поля, что в какой-то степени загораживает электроны от положительного заряда ядра, что и влечёт за собой слегка разную энергию электрнов:

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Другим способом поохотиться на виртуальные частицы является обнаружение их общего влияния на вакуум. Если квантовые поля находятся в постоянном возмущении из-за непрерывного появления и аннигиляции виртуальных частиц, то «нулевая энергия» (энергия нулевого уровня) данных полей будет ненулевой и абсолютно пустой объём пространства будет иметь какое-то количество реальной энергии – энергии вакуума.


В 1948 году голландский физик Хендрик Казимир придумал замечательный способ обнаружить данную энергию. Он предложил расположить две проводящие пластины, расположенные очень близко друг к другу таким образом, чтобы между ними могли существовать фотоны только определённой частоты (возьмите гитарную струну определённой длины – она будет резонировать только на определённые звуковые частоты). Нерезонирующий фотон не сможет существовать между пластинами, что вызовет пропорциональное уменьшение энергии вакуума между пластинами, однако на внешней поверхности пластин могут существовать фотоны с любой энергией, в результате чего возникнет сила, сдавливающая пластины ближе друг к другу. Эффект Казимира был впервые успешно измерен лишь в 1984 году.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Вне зазора, сформированного пластинами, могут существовать частицы с любыми частотами. Между пластинами, возможны частицы лишь с определённым набором частот.


Ни эффект Казимира, ни сдвиг Лэмба не позволяют оценить количество энергии вакуума в абсолютном выражении. Данные эксперименты способны оценить лишь относительную разность уровней энергии между между разными состояниями, поэтому возникает вопрос, а сколько вообще энергии содержится в вакууме? На данный момент наука пока не знает ответа на этот вопрос. Одним из ответов может быть ускорение расширения вселенной – тёмная энергия может быть энергией вакуума.


Австралийским учёным из центра исследования субатомной структуры материи физического отделения университета Аделаиды под руководством Дерека Лайнвебера удалось создать компьютерную модель флуктуаций, происходящих в крохотном объёме пространства 2,4×2,4×3,8 фемтометра (1×10⁻¹⁵ метра). Анимация ниже построена при помощи данной модели. Уровень энергии закодирован в цвете, при этом самый низкий уровень энергии сделан прозрачным, так, чтобы мы могли видеть, что происходит внутри. Анимация смоделирована со скоростью 1×10²⁴ кадров в секунду.

Так ли "пуст" вакуум как нам кажется? Физика, Вакуум, Квантовая механика, Наука, Неопределенность Гейзенберга, Гифка, Длиннопост

Анимация Центра исследований субатомной структуры материи физического отделения университета Аделаиды (Австралия)


Именно так выглядит пустое место или вакуум. В пустоте непрерывно происходят подобные флуктуации, потому что даже в самом разреженном вакууме межзвёздного или даже межгалактического пространства всё равно присутствует энергия. Это может показаться странным, но для создания истинного вакуума с минимально-возможным уровнем энергии, этой энергии придётся затратить гораздо больше. И даже если бы нам удалось создать подобный истинный вакуум, он бы оказался крайне нестабилен, словно гвоздь, сбалансированный вертикально на своём острие – малейшая помеха и энергия снова хлынет в него, возобновляя флуктуации.

P. S. Всех пикабушников с наступающим новым годом! В следующем посте будем разбираться с тем, кто такие кварки.

Показать полностью 7

Как термоядерный синтез решит почти все наши проблемы

Этот пост - не о том, какие проблемы есть у термоядерной энергетики, а фантазия на тему того, что человечеству может дать доступ к термоядерной энергии.


(Очень много букв!)


Доступ к дешёвой энергии не будет означать лишь то, что вы будете меньше платить по счётчику за электричество. По своему масштабу, это будет грандиозный скачок! По важности для истории человечества это будет сравнимо с приручением огня и изобретением письменности.


(по мотивам Youtube публикаций канала Science and Futurism пользователя Isaac Arthur)

Как термоядерный синтез решит почти все наши проблемы Футуризм, Термоядерный синтез, Познавательно, Наука, Планы на будущее, Гифка, Длиннопост

Картинка пользователя T-McG (Deviant Art)



Термоядерный синтез получил несколько дурную репутацию. В 50-х годах прошлого века говорили, что эта технология придёт «через 20 лет», но и спустя семьдесят лет с тех пор, люди по-прежнему говорят «через 20 лет», и поэтому, когда речь заходит о термоядерной энергетике, людьми овладевают сомнения, а некоторые даже заявляют, что данная технология невозможна.


История изобретения водородной бомбы наглядно показывает, почему про термоядерную энергетику говорят, что она всегда останется «технологией будущего».


За одно поколение, человечество преодолело путь от понимания устройства атомного ядра до атомной бомбы. Спустя всего 7 лет после Хиросимы и Нагасаки мы получили водородную (термоядерную) бомбу. Многие тогда думали, что управляемый термоядерный синтез не за горами, но более, чем полвека спустя, воз и ныне там. Впрочем, в последнее время учёные начинают делать определённые успехи.


Сегодня мы перешагнём через скепсис, а так же не будет подробно рассматривать конкретные механизмы и конструкцию реакторов, в которых предполагается получить синтез. В сети есть множество материалов и дискуссий на эту тему, создавать ещё одну было бы бессмысленно.


Давайте, всё же, очень быстро коснёмся основных аспектов технологии, а так же рассмотрим конструкцию реактора, которая точно работает, и пойдём дальше.


Термоядерный синтез – это то, на чём работают звёзды в нашей вселенной. Это процесс сталкивания друг с другом множества ядер лёгких элементов, таких как водород, либо его основой изотоп – дейтерий, пока они не образуют в результате столкновения более тяжёлые элементы, такие как гелий. Ядра гелия тоже можно столкнуть друг с другом, чтобы образовать ядро углерода.


Ниже показан пример синтеза ядер трития и дейтерия с образованием ядра гелия.
Как термоядерный синтез решит почти все наши проблемы Футуризм, Термоядерный синтез, Познавательно, Наука, Планы на будущее, Гифка, Длиннопост

Процесс сопровождается выбросом огромной энергии – в ядре дейтерия один нейтрон и один протон, в ядре углерода 6 нейтронов и 6 протонов. Но ядро углерода весит гораздо меньше, чем 6 ядер дейтерия, поэтому вся «недостающая» масса превращается либо в нейтрино, либо в очень быстрые фотоны, энергию которых мы и можем использовать.


Это колоссальная энергия, гораздо больше, в миллионы раз большая энергия, чем энергия, которую можно получить из эквивалентной массы бензина или угля.


Может быть, мы и получим управляемый синтез в ближайшее время, а может быть и нет, однако, как уже было сказано, у нас всегда была схема работающего термоядерного реактора (и это не Солнце!).


Если упрощённо, можно построить подземный, хорошо (очень хорошо!) укреплённый бункер побольше, наполнить его водой, вывести патрубки к турбинам на поверхности. Затем просто бросить внутрь термоядерную бомбу и взорвать её. Тепло от взрыва разогреет воду, превратит её в пар, пар закрутит турбины, мы получим энергию. Когда пар иссякнет, можно повторить процесс. Если взрывать по одной бомбе в час, можно спокойно питать энергией целый промышленно-развитый континент.

Как термоядерный синтез решит почти все наши проблемы Футуризм, Термоядерный синтез, Познавательно, Наука, Планы на будущее, Гифка, Длиннопост

Однако, данный метод не очень привлекателен, термоядерные бомбы не такие уж и дешёвые, а сооружение экспериментального реактора ITER вместе с большим адронным коллайдером покажутся конструктором Lego, по сравнению с подобным бункером.


Но это будет работать!


Давайте, всё же, не будем останавливаться на более изящных устройствах и просто предположим, что у нас имеется рабочий термоядерный реактор и заострим своё внимание на том, какой переворот данная технология совершит в нашей экономике.


В начале, следует, конечно же, оговориться, что термоядерный синтез не является неисчерпаемым источником энергии, однако, данный вид энергии производится из одного из наиболее распространённых веществ во вселенной, и удельная выработка на килограмм вещества настолько велика, что один супертанкер с термоядерным топливом мог бы снабжать энергией всю мировую экономику несколько тысячелетий.



ТРАНСПОРТ

Как термоядерный синтез решит почти все наши проблемы Футуризм, Термоядерный синтез, Познавательно, Наука, Планы на будущее, Гифка, Длиннопост

Мы знаем, насколько дешева электроэнергия, произведённая на атомной электростанции. Термоядерная энергия будет ещё дешевле, однако это не сильно помогает нам с автомобилями (автомобили на тории – полная чушь!) Сейчас пытаются использовать батареи или солнечные панели, однако они малоэффективны, и с трудом могут заменить бензин. Но ведь у нас есть термоядерная энергия, почему бы просто не продолжить использовать бензин?


Абсурд?! Вовсе нет. Ископаемое топливо называют углеводородным потому, что в присутствии высоких температур и кислорода, они горят и распадаются на воду и диоксид углерода (углекислый газ), высвобождая запасённую химическую энергию. Этот же процесс можно запустить и в обратную сторону – соединить воду и углекислый газ, чтобы получить в итоге углеводород и воду. Первый процесс производит энергию, второй наоборот – требует потратить её, и, по правде говоря, тратится на это гораздо больше энергии, чем можно получить от повторного сжигания, потому-то сейчас делать это абсолютно бессмысленно. Но если у вас есть практически неисчерпаемый источник энергии, кого будет волновать, что на производство запасание 1 литра «ёмкостью» в ~30 млн джоулей энергии придётся затратить четверть миллиарда джоулей?


Обыкновенная «пальчиковая» батарейка ААА стоит в районе 50 рублей за штуку, примерно столько же, чуть дороже 1 литра бензина, но не содержит и одной тысячной доли энергии, чем бензин, и ещё больше энергии, чем в батарейке содержится, тратится на её зарядку. Но она всё ещё стоит своих денег из-за своей транспортабельности. Если бы у нас были батареи, которые бы по плотности энергии были бы лучше, чем ископаемое топливо, нас бы это не волновало, но у нас нет таких батарей, кроме того, со временем любая батарея теряет свой заряд, и это происходит гораздо быстрее, чем бензин теряет свои свойства.

И так, если у вас есть термоядерная энергия, у вас есть дешёвое топливо. И это  без вреда для экологии!


ЭКОЛОГИЯ И СЕЛЬСКОЕ ХОЗЯЙСТВО

Как термоядерный синтез решит почти все наши проблемы Футуризм, Термоядерный синтез, Познавательно, Наука, Планы на будущее, Гифка, Длиннопост

Вы так же можете получить и дешёвое удобрение. В качестве основного удобрения мы используем соединения азота, которые мы получаем в промышленности из аммиака, произведённого по процессу Габера-Боша из атмосферного азота и того же водорода.


Такой же трюк мы можем проделать и с фосфором – вторым по своему значению удобрению. Фосфор в естественных условиях не встречается в высоких концентрациях, во многих местах его добыча весьма дорого стоит, но если у нас есть дешёвая энергия, его можно сепарировать весьма простыми методами (хоть на центрифугах).


Всё те же принципы применимы к любому минералу, хотите – с термоядерной энергией можно разрабатывать хоть астероиды!


По этой же причине, имея много энергии, утилизация и повторная переработка любых отходов существенно удешевляется и упрощается.


То же с водой. На нашей планете во многих местах ощущается нехватка пресной воды, но с дешёвой энергией солёную воду можно опреснять даже для нужд сельского хозяйства. У вас не будет засух, у вас всегда будет вода, чтобы поливать поля.


У вас всегда будут дешёвые, углеродно-нейтральные пластики или поликарбонат для возведения теплиц, которые позволят существенно сократить затраты воды, а так же

поддерживать температуру, более благоприятную для растений.


Да что там, вы всегда сможете отапливать данные теплицы хоть за полярным кругом!


И так, под нужды сельского хозяйства в нашем распоряжении окажутся все пустыни и вся вечная мерзлота, мы сможем ставить отапливаемые теплицы, набитые дешёвыми удобрениями, которые смогут производить гораздо больше еды, чем старомодные фермы.


Но это ещё не конец, возможно, вы слышали о вертикальных фермах, где растения растут в несколько этажей. С дешёвой энергией мы можем освещать их инфракрасными светодиодами, предоставляя наилучшие условия для фотосинтеза.


Когда мы говорим о вертикальных фермах, или подземных фермах или о гидропонике, нам необходимо знать, сколько энергии требуется для производства одной калории (на самом деле килокалории) пригодной для еды пищи. Или, проще говоря, количестве еды, которое требуется человеку в год.


Немного сложно сделать точную оценку, поэтому приведённые цифры будут весьма приблизительны.


Начнём с времён охоты и собирательства – на то, чтобы прокормить одного человека, требовался примерно 1 кв. км земли. Питание – от Солнца. Это даёт нам примерно 10^16 джоулей солнечной энергии в год.


В средние века, ферма на 80 гектар могла нормально прокормить семью, и это было в 100 раз эффективнее – примерно 10^14 джоулей в год на человека.


При термоядерном синтезе проходит конверсия массы с эффективностью около 1% (старое доброе E = MC^2), что даёт 10^17 джоулей на килограмм полной конверсии или 10^15 джоулей (для 1% конверсии). Это означает, что для охотников-собирателей вам потребуется 10 кг термоядерного топлива на человека в год, для доинтустриального общества уже в 10 раз меньше – всего 1 кг.


В этом же масштабе, современный землянин в постиндустриальном государстве использует несколько сотен миллиардов джоулей энергии в год, что эквивалентно порядка 10 тыс. литров бензина, либо менее 1 грамма термоядерного топлива.


Но можно пойти и дальше, новые технологии, энергосбережение, использование только инфракрасного спектра, вертикальные фермы, всё это можно попытаться довести до приблизительно нескольких сотен миллиардов джоулей в год на человека.


Помимо растительной пищи, нам требуется и мясо (веганы негодуют!). Нужны пастбища, поэтому, следует немного увеличить годовое энергопотребление на одного человека, скажем, до круглой цифры в триллион джоулей в год, что эквивалентно одному грамму термоядерного топлива.


Я умышленно применяю термин термоядерное топливо, так как неизвестно, что именно будет использоваться в качестве такового - простой водород был бы идеален, так как он является наиболее распространённым веществом во вселенной. Однако, в настоящее время исследования направлены на различные изотопы водорода и гелия, например, дейтерий. Дейтерий тоже весьма распространён, но, разумеется, не так широко, как простой водород.


Но что важно, так это то, что, вне зависимости от типа термоядерного топлива, одного его грамма достаточно, чтобы поддерживать комфортное существование человека хоть на Луне, хоть на Плутоне. Килограмма этого топлива хватит на обеспечение роскошных условий существования всю его жизнь. Десять тонн этого топлива хватит, чтобы поддерживать в течение года естественное “солнечное” освещение на территории, сравнимой с республикой Ингушетия (3,6 тыс. кв. км).


ОСВОЕНИЕ КОСМОСА

Как термоядерный синтез решит почти все наши проблемы Футуризм, Термоядерный синтез, Познавательно, Наука, Планы на будущее, Гифка, Длиннопост

Иными словами, вы можете построить огромный вращающийся цилиндр О’Нила с искусственным солнцем в центре, на внутренней поверхности которого можно разместить заповедник дикой природы.


Подобный цилиндр способен обеспечить комфортное проживание нескольких сотен тысяч жителей, которые будут обеспечены всем необходимым. Добывая простой водород, такая колония, теоретически не будет нуждаться более ни в чём.


Имея полную автономию, человечество может строить поселения где угодно в Солнечной системе.


И разумеется, сооружение подобной колонии будет существенно легче при наличии неограниченного количества дешевой энергии.


Наличие термоядерной энергии позволит космическим кораблям ускоряться непрерывно неделями, если не месяцами, что может сократить длительность полёта, например, к Марсу с нескольких месяцев до нескольких недель, если не дней. А топливо - топлива всегда в избытке. Запасов водорода на одном Юпитере хватит на многие многие поколения.


Перечисленное в данном посте - далеко не всё. Освоение термоядерной энергии гарантирует человечеству выживание и уверенность в завтрашнем дне. Освоение данного технологического уклада изменит жизнь людей фундаментальнейшим образом. Надеюсь, к лучшему.

Показать полностью 6
Отличная работа, все прочитано!