Что такое квантовый компьютер и из чего он состоит? Далеко не все вычислительные машины имеют право на такое название. Почему это так и для чего нужны подобные установки, объясняет Кристофер Монро, профессор Университета Мэриленда и один из ведущих игроков в глобальной "квантовой гонке".
Российский квантовый центр регулярно проводит в Москве крупные международные конференции, посвященные развитию квантовых технологий и их применению на практике. В ее работе принимают участие не только ведущие исследователи, но и представители крупного российского и зарубежного бизнеса и представители власти.
В этом году на конференции выступили лидеры трех научных команд, лидирующих в создании сложных квантовых вычислительных систем. Помимо Михаила Лукина, профессора Гарвардского университета (США), который впервые заявил о создании рекордно мощного 51-кубитного компьютера на предыдущей конференции, в ней участвовали профессоры Кристофер Монро и Хармут Невен.
Монро, работающий сегодня в Университете Мэриленда (США), создал аналогичную по мощности машину почти одновременно с его российско-американским коллегой, используя похожие, но несколько иные принципы.
Он рассказал о том, в какую сторону развивается эта система, чем она отличается от "конкурентов" и где пролегает граница между настоящими квантовыми компьютерами, полностью соответствующими этому термину, и вычислительными системами, которые построены на базе классических принципов.
Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе. Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.
Сегодня существует два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства. Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами.
Адиабатический компьютер проще создать, но он ближе по принципам своей работы к арифмометрам, логарифмическим линейкам и аналоговым компьютерам начала XX века, а не к цифровым устройствам современности. Существуют и гибридные подходы, сочетающие в себе черты и тех и других машин. К их числу, как считает Монро, можно отнести и компьютер Михаила Лукина.
По словам Монро, это связано с тем, что ячейки памяти в его машине построены на базе ионов редкоземельного металла иттербия, чье состояние не меняется, если манипулировать ими при помощи лазерных лучей. Квантовый компьютер Лукина, в свою очередь, построен на базе так называемых атомов Ридберга, не защищенных от подобных воздействий.
Они представляют собой атомы рубидия-87 или других щелочных металлов, чей свободный электрон был "отодвинут" на огромное расстояние от ядра при помощи особых лазерных или радиоволновых импульсов. Из-за этого размеры атома увеличиваются примерно в миллион раз, что превращает его в кубит, но, как объяснил Монро, не позволяет передвигать его, не деформируя эту конструкцию и не разрушая квантовые состояния.
Отсутствие подобных проблем у ионов, по словам американского физика, позволило его команде создать не гибридный, а полностью управляемый квантовый компьютер, чьими кубитами ученые могут манипулировать прямо в ходе ведения вычислений.
К примеру, еще три года назад, задолго до создания более крупных машин, Монро и его команда заявили, что им удалось создать первый перепрограммируемый квантовый вычислитель, состоявший из пяти ячеек памяти. Эта скромная машина, благодаря высокой гибкости ее работы, позволила физикам исполнить на ней сразу несколько квантовых программ.
В частности, им удалось запустить на этом мини-компьютере алгоритмы Дойча — Йожи, Бернштейна — Вазирани, а также создать квантовую версию преобразований Фурье, краеугольного камня криптографии и ее взлома.
Эти успехи, а также сложности в удержании большого числа ионов в ловушках, как отмечает Монро, натолкнули его на мысль, что квантовые вычислительные системы следует создавать не монолитными, а модульными. Иными словами, "серьезные" квантовые компьютеры будут представлять собой не единое целое, а своеобразную сеть, состоящую из множества однотипных и достаточно просто устроенных модулей.
Несовершенство вакуума
Подобные системы, как отметил американский профессор, уже существуют, однако пока не используются в прототипах квантовых компьютеров по одной простой причине — они работают примерно в сто раз медленнее, чем сами кубиты. Тем не менее он считает, что эта проблема вполне разрешима, так как имеет инженерный, а не научный характер.
Еще одна потенциальная проблема, которая будет мешать работе монолитных или просто крупных квантовых компьютеров, заключается в том, что вакуум, как выразился Монро, не идеален. В нем всегда присутствует небольшое число молекул, каждая из которых может столкнуться с атомными кубитами и помешать их работе.
Единственный способ это преодолеть — еще сильнее охладить квантовый компьютер, максимально приблизившись к абсолютному нулю. Команда Монро пока этим не занимается, так как число кубитов в их машине невелико, однако в будущем эту проблему обязательно придется решить.
Модульный подход, как предполагает американский профессор, будет еще одним из способов решения этой проблемы, так как позволит разбить компьютер на множество независимых друг от друга частей, содержащих относительно небольшие количества кубитов. В теории он будет работать не так быстро, как монолитная машина, но при этом позволит обойти проблему "несовершенного вакуума", поскольку модули будет проще охлаждать и контролировать.
Когда наступит это время? Как предполагает Монро, в ближайшие три-пять лет будут созданы машины, включающие в себя несколько сотен кубитов. Они будут способны исполнять несколько десятков тысяч операций, и для их работы не потребуются экстремальные системы охлаждения или системы коррекции ошибок.
Подобные машины смогут решать многие сложные практические задачи, однако они не будут полноценными компьютерами в классическом смысле этого слова. Для этого потребуется нарастить число кубитов и "научить" их самостоятельно исправлять ошибки в своей работе. На это, по мнению физика, уйдет еще пять лет.
Финишная прямая гонки
Первые сложные квантовые вычислительные машины, как полагает Монро, будут построены на базе ионных или атомных технологий, так как все остальные варианты кубитов, в том числе и перспективные полупроводниковые ячейки памяти, еще не достигли схожего уровня развития.
"Пока это все университетские лабораторные эксперименты. Эти кубиты нельзя использовать для создания полноценных логических элементов. Поэтому я соглашусь с Михаилом в том, что нашим коллегам из Австралии, Intel и других коллективов придется решить много практических проблем, прежде чем они смогут создать полноценную вычислительную систему", — отмечает физик.
Как определить победителя в этой "квантовой гонке"? Два года назад Монро и его коллеги попытались дать ответ на этот вопрос, организовав первое сравнительное тестирование квантовых компьютеров. В качестве конкурента для первой версии своей машины они избрали квантовый компьютер фирмы IBM, созданный на базе сверхпроводящих кубитов.
Для их сравнения физики и программисты из Университета Мэриленда подготовили первый набор "квантовых бенчмарков" — простых алгоритмов, позволяющих оценить и точность, и скорость работы этих компьютеров. Тест не выявил прямого победителя — компьютер Монро и его команды выиграл в точности, но проиграл в скорости работы машине IBM.
При этом Монро считает, что так называемое квантовое превосходство — создание квантового компьютера, поведение которого нельзя просчитать другими методами — не будет каким-то серьезным научным или практическим достижением.
"Проблема заключается в самом понятии. С одной стороны, наши эксперименты с пяти десятками кубитов, как и опыты Михаила, помогли вычислить те вещи, которые никак иначе нельзя просчитать. С другой стороны, это нельзя назвать превосходством, так как мы не можем доказать, что это реально нельзя вычислить иными способами. Квантовое превосходство рано или поздно появится, но лично я не собираюсь гнаться за ним", — подчеркнул ученый.
Еще одна сложность заключается в том, что мы пока не можем точно сказать, какие задачи смогут решать квантовые компьютеры и где их применение будет наиболее обоснованным и полезным. Для этого необходимо, чтобы и научная среда, и все общество в целом начало воспринимать подобные машины как доступный и универсальный инструмент.
Квантовые тайны Вселенной
Еще одна проблема — пока ученые могут заставлять кубиты совершать относительно небольшое число операций, прежде чем связи между ними разрушаются. По этой причине наращивать число ячеек памяти в машине не имеет смысла, так как ее производительность и возможности от этого не увеличатся.
По этой причине американский профессор не считает, что адиабатические вычислительные системы, подобные установкам фирмы D-Wave, можно называть квантовыми компьютерами. Их работа, по мнению физика, основывается на вполне классических физических принципах, не имеющих ничего общего с настоящей квантовой механикой.
"Несмотря на это, подобные аналоговые компьютеры крайне интересны с практической точки зрения. Можно просто взять несколько магнитов, прикрепить их к треугольной сетке и проследить за их поведением. Эти опыты не будут иметь ничего общего с квантовой физикой, но они позволят провести некоторые сложные оптимизационные расчеты. Интерес инвесторов к ним есть, значит, это делается не зря", — продолжает профессор.
Какие задачи сможет решать "настоящий" квантовый компьютер? Как отметил Монро, за последние годы с его командой связались многие другие коллективы физиков. Они планируют использовать их машину для решения многих важных научных задач, которые нельзя просчитать на обычной вычислительной машине.
Пока такие же опыты, как признал физик, можно проводить и на обычных суперкомпьютерах. С другой стороны, уже в ближайшие годы число кубитов в квантовых машинах значительно вырастет, что сделает их работу непросчитываемой.
Это расширит их применимость и сделает подобные эксперименты одним из самых интересных и уникальных способов изучать самые крупные и загадочные объекты Вселенной, а также решать многие повседневные задачи, такие как поиск маршрутов или управление экономикой, заключает исследователь.
Источник: https://ria.ru/amp/20190803/1557127001.html