От фотографии горизонта событий черной дыры до проверки теории о невозможном двигателе EmDrive, от создания квантовых компьютеров до решения дилеммы кота Шредингера. Пропустили самое громкое открытие в истории астрофизики? Не беда, — специально для вас топ-8 открытий в физике 2019 года:
1. Фотография черной дыры
На самом деле увидеть черную дыру невозможно, поскольку эти сверхтяжелые объекты являются буквально невидимыми и поглощают любые виды электромагнитного излучения. Поэтому ученые получили изображение только ее очертаний — так называемого горизонта событий. Тем не менее, это одно из самых громких научных открытий не только в 2019-м, но и в целом за всю историю исследований.
Прорыв случился благодаря работе восьми телескопов проекта Event Horizon Telescope (EHT) или «Горизонт событий», которые последние несколько лет исследовали ближайшие к Земле черные дыры.
«Сфотографировать тень, которую отбрасывает горизонт событий черной дыры — это все равно, что сфотографировать DVD-диск на поверхности Луны из Земли» — говорил астрофизик из Университета Аризоны Димитриос Псалтис. Отражение горизонта событий демонстрирует искривленный свет и всю окружающую среду, которую поглощает черная дыра, в прямом смысле изменяя известные человеку законы физики.
2. «Невозможный» двигатель возможен
Ровно 20 лет ученые со всего мира пытаются доказать, что двигатель EmDrive, проект которого предложил британский инженер Роджер Шойер в 1999 году, является невозможным, поскольку он противоречит фундаментальным законам физики.
Шойер предложил свою силовую установку как один из вариантов «вечного» двигателя для гипотетических межзвездных путешествий. В качестве движущей силы в EmDrive используется магнетрон, который генерирует микроволны, и, по заявлениям автора, накапливает энергию колебаний в резонаторе, создавая тягу.
Летом этого года представители Немецкого Технического Университета Дрездена провели свой эксперимент, чтобы точно установить, работает ли двигатель EmDrive. Чтобы засечь реальную тягу без каких-либо погрешностей, физики использовали маятниковые весы, которые измеряют силу крутящего момента, приложенного к оси маятника, а также лазерный интерферометр, который нивелирует физическое смещение маятниковых весов. Команда Таймара назвала свое устройство «самым чувствительным балансом тяги из когда-либо существовавших в мире».
Несмотря на создание специального экрана, который блокирует EmDrive от любых помех, включая действие магнитных полюсов Земли, сейсмические колебания планеты и тепловое расширение из-за нагрева от микроволн, ученые все же зафиксировали тягу в 3,4 микроньютона, что подтверждает дееспособность «невозможного» двигателя.
3. Квантовое превосходство Google
Как только квантовые компьютеры смогут производить вычисления, которые не под силу обычным компьютерам — человечество достигнет квантового превосходства. Это событие сулит нам настоящую революцию во всех сферах жизни, поскольку первый эффективный квантовый компьютер поможет создать буквально фантастические композитные материалы для новых видов транспорта, электронных устройств, не говоря уже о потенциальных изменениях в цифровых системах.
Пару месяцев назад в Google заявили, что их квантовый процессор Sycamore за три минуты и 20 секунд выполнил вычисления, которые классический суперкомпьютер будет производить около 10 тыс. лет.
Технически Sycamore создали из алюминия, индия (очень мягкий металл) и кремния. Объединить эти материалы удалось благодаря эффекту Джозефсона — протекания сверхпроводящего тока через два сверхпроводника. Чтобы достичь квантового состояния кубитов — минимальных единиц информации в квантовом компьютере, — процессор охладили до температуры, близкой к абсолютному нулю (20 милликельвинов), что примерно равняется минус 273 градусам Цельсия.
Но, на заявление о квантовом превосходстве сразу же отреагировали главные конкуренты Google на поле квантовых компьютеров — компания IBM. Представители корпорации объяснили, что произведенные вычисления квантовым процессором Google Sycamore имеют лишь технический характер, и их суперкомпьютер Summit сможет провести аналогичные вычисления всего за два с половиной дня.
4. Судьба кота Шредингера
Одним из наиболее загадочных явлений квантовой механики является квантовая суперпозиция — нахождение элементарных частиц в нескольких состояниях одновременно до момента их измерения наблюдателем.
В первой половине прошлого века один из основателей квантовой механики Эрвин Шредингер предложил мысленный эксперимент, который объясняет квантовую суперпозицию: условный кот в коробке с кислотой является и живым и мертвым одновременно до тех пор, пока мы не откроем эту коробку и не определим его состояние. Осенью 2019-го ученые из Японии и Индии придумали, как заглянуть в коробку с котом, не убивая его.
Физики предложили решение проблемы кота Шредингера благодаря изменению методов анализа данных о состоянии элементарных частиц, а не благодаря их измерению, как это делали ранее. С помощью математических вычислений ученые смоделировали условную ситуацию: закрытую коробку с котом Шредингера нужно сфотографировать с помощью камеры, которая установлена снаружи коробки, и при этом может заснять сквозь коробку самого кота.
После создания такого фото в камере будет храниться два типа информации: первый о том, как изменилось состояние суперпозиции кота (ученые называют это квантовой меткой) и второй о том, является ли кот живым или мертвым.
Авторы эксперимента взяли за основу своей математической модели способность фотонов входить в запутанное состояние вместе с квантовой системой. Вместо того, чтобы определить состояние частицы (кота) посредством ее измерения, т. е. прямого влияния света (фотонов) на нее, они использовали условную камеру, которая фотографирует кота сквозь коробку.
5. Пространство не бесконечно
Принято считать, что Вселенная бесконечна. Однако, это утверждение имеет физическое и математическое доказательство: согласно действующим космологическим теориям, все пространство вокруг нас равномерно расширяется во всех направлениях, и в нем соблюдается Евклидова геометрия (параллельные прямые любой длины никогда не пересекутся, а сумма углов любого треугольника будет равна 180 градусам).
В начале 2000-х исследователи определили критическую плотность материи во Вселенной — 5,7 атомов водорода на квадратный метр. Этот показатель подтверждает, что Вселенная является открытой, плоской и бесконечной. В ноябре 2019-го ученые из Римского университета Ла Сапиенца из Парижского института астрофизики заявили, что реальная плотность материи во Вселенной может быть на 5% больше, чем действующий показатель критической плотности.
Таким образом, в инфляционной модели Вселенной должна преобладать гравитация, а все пространство вокруг нас в какое-то время должно было захлопнуться из-за его положительной кривизны. Иными словами, Вселенная может быть не бесконечной, а иметь форму замкнутой сферы. Астрофизики уверены, что их расчеты позитивной кривизны Вселенной верны «более чем на 99%».
Гипотетически, такое исследование позволяет нам даже определить размеры Вселенной, и означает, что путешествуя из любой точки в одном направлении длительное время, мы все равно вернемся в самое начало. Такое заявление ставит под угрозу теории о расширении Вселенной и содержание в ней темных энергии и материи.